威尼斯(98858-VIP认证)-www.98858.com|登录入口

 
当前位置:
转译 | TIL治疗实体瘤概况
来源: | 作者:98858vip威尼斯下载 | 发布时间: 2022-11-30 | 490 次浏览 | 分享到:

2022年8月,西南医科大学的研究人员在cancers上发表了一篇综述,重点介绍了单独使用TIL疗法或与其他疗法联合用于实体瘤治疗的临床试验,并讨论了TIL治疗实体瘤的潜力和方向[1]。以下为部分译文:


TIL治疗实体瘤的成功案例 


转移性黑色素瘤


自Steven Rosenberg研究小组成功将TIL疗法应用于转移性黑色素瘤患者以来[2],全球已开展了一系列相关临床试验。据报道,1988-2016年接受TIL联合白细胞介素-2(IL-2)治疗晚期皮肤黑色素瘤患者的客观应答率(ORR)为41%,总体完全缓解率(CRR)为12%[3]。接受TIL和高剂量IL-2(HD IL-2)治疗的患者的完全缓解率(CR)和部分应答率(PR)分别为4.5%和31.8%[4]。2021年,Iovance开展了其TIL产品Lifileucel(LN-144)治疗免疫检查点抑制剂(ICI)进展后的晚期黑色素瘤的II期临床试验[5],疾病控制率(DCR)为80%,ORR为36%,CR为3%,PR为33%。


宫颈癌


几乎所有宫颈癌的发病都存在人乳头瘤病毒(HPVs)的持续性感染[6]。一项临床研究结果显示,使用过继细胞疗法(ACT)联合HPV-TIL可以介导转移性宫颈癌的消退[7]。9名宫颈癌患者中,有3名患者经历了客观的肿瘤反应,2名患者的完全缓解持续了一年以上,其余患者有部分缓解。在一项II期临床试验中,TIL产品LN-145成功治疗了晚期宫颈癌患者,ORR为44%,包括1例完全缓解、9例部分缓解和2例未经证实的部分缓解[8]。


这项研究印证了TIL疗法在宫颈癌患者中的可行性和有效性,美国食品和药物管理局(FDA)因此授予LN-145突破性治疗地位。


转移性胆管癌


2014年,有研究人员成功扩增了转移性胆管癌患者的新抗原特异性TIL[9]。患者接受IL-2和TIL(其中含有大量CD4+新抗原特异性T细胞)输液后,肝肺转移显著消退[9]。


转移性结直肠癌


在一项II期临床试验中(NCT01174121),一名患有转移性结直肠癌的50岁女性接受了由约75%的CD8+T细胞组成的TIL,可以特异性识别KRAS G12D突变体。该患者的所有转移性病变均实现消退,并达到9个月的部分缓解[10]。


乳腺癌


2017年,研究人员成功从乳腺癌患者体外分离和扩增了TIL,这些TIL显示出对自体肿瘤细胞的反应[11]。科研人员于2018年对激素受体阳性转移性乳腺癌患者进行了TIL联合抗PD-1单克隆抗体治疗,实现了完全和持久的肿瘤消退[12]。


非小细胞肺癌


2020年的一项临床研究(NCT03215810)证实,PD-1抑制剂联合TIL治疗非小细胞肺癌(NSCLC)显示出初步疗效[13]。在试验的第一阶段,13名患者中有2名获得了持久的完全缓解。这项临床试验为抗PD-1治疗后的患者提供了希望,并表明TIL疗法联合PD-1抑制剂可以作为治疗转移性NSCLC患者的一种选择。



 TIL制备过程简介


首先通过手术获得新鲜的肿瘤组织,将切下的肿瘤组织通过酶消化、物理解聚或细针抽吸切割成碎片或制成单细胞悬液[14,15]。然后将肿瘤片段或单细胞悬液在含有IL-2的完整培养基中培养。选择与自体肿瘤材料或肿瘤细胞在体外共培养中检测到干扰素-γ(IFN-γ)进行进一步培养,或者使用未经特定肿瘤识别测定的“年轻”TIL,其具有更长的端粒和更高水平的共刺激分子CD27和CD28,有利于TIL在体内的增殖、存活和持久性[16,17]。最后再通过荧光激活细胞分选(FACS)或磁性细胞分选(MACS)从复杂的肿瘤微环境中分离出效应T细胞。


当获得足够数量的初始TIL后,可选择冷冻保存或直接进行14天的扩大培养(REP),再将TIL培养物扩增至用于治疗水平的数量,最后将这些TIL和适当剂量的IL-2一起输液至淋巴细胞耗竭的患者体内。


在给患者回输TIL之前,需要联合化疗或全身放疗(TBI)进行非清髓性(NMA)淋巴细胞消除。淋巴细胞耗竭可以通过多种潜在机制增强TIL的作用,例如通过增加宿主稳态细胞因子(包括IL-7和IL-15)和减少竞争这些营养细胞因子的内源性淋巴细胞,以消除Tregs[18,19]。此外,淋巴细胞耗竭可以增强抗原呈递细胞(APC)的活化,而APC在调节过继转移的T细胞中起重要作用[20]


IL-2是一种重要的细胞因子,它能够刺激效应T细胞的生长和存活[21],但目前IL-2输注的最佳剂量尚未确定。



 TIL与其他疗法联合治疗


01   联合ICI


TIL治疗与抗PD-1/PD-L1抗体治疗的联合治疗方法在最近的一些试验中显示出初步的良好结果[13,22]。但TILs联合抗PD-1治疗仍处于临床试验阶段,所以TILs和抗PD-1的治疗效果在结果公布之前还无法评估。最近的研究发现,除肿瘤细胞外,树突状细胞(DC)也表达高水平的PD-L1,可抑制T细胞的活化及其抗肿瘤活性[23,24]。这项研究将为TIL联合PD-L1抑制剂治疗PD-L1高表达的癌症患者提供理论依据。



02  联合BRAF抑制剂


v-raf小鼠肉瘤病毒癌基因同源物B1(BRAF)基因在细胞生长和分化中起重要作用。研究表明,BRAF抑制剂可减少相关的免疫抑制信号,促进淋巴细胞浸润,减少免疫抑制细胞,并增强黑色素瘤抗原的呈递[25,26] (图2)。BRAF抑制剂治疗BRAF V600E突变黑色素瘤的ORR高达50%,有效提高无进展生存率和总生存率[27]。最近的一项临床试验显示,11例接受TILs、HD IL-2和BRAF抑制剂联合治疗的转移性黑色素瘤患者中,有7例出现客观缓解,其中2例获得了完全缓解[28]



03  其他联合治疗


DC疫苗可以诱导免疫应答,并可以激活和增加TIL的数量[29,30](图2),其与TIL疗法的联合治疗正在进行临床试验评估(NCT01946373)。

TIL疗法与溶瘤病毒的联合治疗也在探索中[31,32]。该病毒可以通过产生促进TIL抗肿瘤作用的细胞因子来抵抗肿瘤免疫抑制[33]。一项TIL疗法联合腺病毒治疗转移性黑色素瘤的临床试验显示,13例患者中有5例获得客观缓解,其中3例达到完全缓解[33]


(A)BRAF抑制剂可以减少免疫上调信号并促进淋巴细胞的肿瘤浸润;

(B)DC受信号刺激并在MHC上装载肿瘤特异性抗原以激活抗原特异性T细胞;

(C)PD-L1或PD-1阻断剂可以阻止PD-1和PDL-1在TIL和肿瘤细胞之间的相互作用;

(D)阻断与CD28竞争的CTLA-4,使CTLA-4结合B7分子,进而允许T细胞杀伤肿瘤细胞。



总 结


TIL疗法已成功应用于转移性黑色素瘤和其他实体瘤患者,并有着不可替代的优势:能更有效地应对肿瘤异质性[34,35];回输后更容易在肿瘤组织中定位;来自患者本身,没有基因修饰,毒性更低。


综上所述,虽然TIL治疗仍面临一些障碍,但TIL疗法在实体瘤治疗方面仍具有一些独特的优势,与其他疗法联合治疗将会是未来的主要研究方向。


参考文献:

[1]Zhao, Y.; Deng, J.; Rao, S.;Guo, S.; Shen, J.; Du, F.; Wu, X.; Chen,Y.; Li, M.; Chen, M.; et al. Tumor Infiltrating Lymphocyte (TIL) Therapy for Solid Tumor Treatment: Progressions and Challenges. Cancers 2022, 14, 4160.

[2]Rosenberg, S.A.; Packard, B.S.; Aebersold, P.M.; Solomon, D.; Topalian, S.L.; Toy, S.T.; Simon, P.; Lotze, M.T.; Yang, J.C.; Seipp, C.A. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med. 1988, 319, 1676–1680.

[3]Dafni, U.; Michielin, O.; Lluesma, S.M.; Tsourti, Z.; Polydoropoulou, V.; Karlis, D.; Besser, M.J.; Haanen, J.; Svane, I.M.; Ohashi, P.S.; et al. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: A systematic review and meta-analysis. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 1902–1913.

[4]Chandran, S.S.; Somerville, R.P.T.; Yang, J.C.; Sherry, R.M.; Klebanoff, C.A.; Goff, S.L.; Wunderlich, J.R.; Danforth, D.N.; Zlott,D.; Paria, B.C.; et al. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: A single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 792–802.

[5]Sarnaik, A.A.; Hamid, O.; Khushalani, N.I.; Lewis, K.D.; Medina, T.; Kluger, H.M.; Thomas, S.S.; Domingo-Musibay, E.; Pavlick,A.C.; Whitman, E.D.; et al. Lifileucel, a Tumor-Infiltrating Lymphocyte Therapy, in Metastatic Melanoma. J. Clin. Oncol. 2021, 39,2656–2666.

[6]Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Muñoz, N.Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999, 189, 12–19.

[7]Stevanovi´c, S.; Draper, L.M.; Langhan, M.M.; Campbell, T.E.; Kwong, M.L.; Wunderlich, J.R.; Dudley, M.E.; Yang, J.C.; Sherry,R.M.; Kammula, U.S.; et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 1543–1550.

[8]Jazaeri, A.A.; Zsiros, E.; Amaria, R.N.; Artz, A.S.; Edwards, R.P.; Wenham, R.M.; Slomovitz, B.M.; Walther, A.; Thomas, S.S.; Chesney, J.A.; et al. Safety and efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma. J. Clin. Oncol. 2019, 37 (Suppl. 15), 2538.

[9]Tran, E.; Turcotte, S.; Gros, A.; Robbins, P.F.; Lu, Y.C.; Dudley, M.E.; Wunderlich, J.R.; Somerville, R.P.; Hogan, K.; Hinrichs,C.S.; et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 2014, 344,641–645.

[10]Tran, E.; Robbins, P.F.; Lu, Y.C.; Prickett, T.D.; Gartner, J.J.; Jia, L.; Pasetto, A.; Zheng, Z.; Ray, S.; Groh, E.M.; et al. T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer. N. Engl. J. Med. 2016, 375, 2255–2262.

[11]Lee, H.J.; Kim, Y.-A.; Sim, C.K.; Heo, S.-H.; Song, I.H.; Park, H.S.; Park, S.Y.; Bang, W.S.; Park, I.A.; Lee, M.; et al. Expansion of tumor-infiltrating lymphocytes and their potential for application as adoptive cell transfer therapy in human breast cancer.Oncotarget 2017, 8, 113345–113359.

[12]Zacharakis, N.; Chinnasamy, H.; Black, M.; Xu, H.; Lu, Y.-C.; Zheng, Z.; Pasetto, A.; Langhan, M.; Shelton, T.; Prickett, T.; et al.Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat. Med. 2018, 24,724–730.

[13]Creelan, B.C.; Wang, C.; Teer, J.K.; Toloza, E.M.; Yao, J.; Kim, S.; Landin, A.M.; Mullinax, J.E.; Saller, J.J.; Saltos, A.N.; et al.Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: A phase 1 trial. Nat. Med. 2021, 27,1410–1418.

[14]Dudley, M.E.; Wunderlich, J.R.; Shelton, T.E.; Even, J.; Rosenberg, S.A. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J. Immunother. 2003, 26, 332–342.

[15]Nguyen, L.T.; Yen, P.H.; Nie, J.; Liadis, N.; Ghazarian, D.; Al-Habeeb, A.; Easson, A.; Leong, W.; Lipa, J.; McCready, D.; et al.Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs). PLoS ONE 2010, 5, e13940.

[16]Tran, K.Q.; Zhou, J.; Durflinger, K.H.; Langhan, M.M.; Shelton, T.E.; Wunderlich, J.R.; Robbins, P.F.; Rosenberg, S.A.; Dudley, M.E.Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J. Immunother. 2008,31, 742–751.

[17]Geukes Foppen, M.H.; Donia, M.; Svane, I.M.; Haanen, J.B.A.G. Tumor-infiltrating lymphocytes for the treatment of metastatic cancer. Mol. Oncol. 2015, 9, 1918–1935.

[18]Antony, P.A.; Piccirillo, C.A.; Akpinarli, A.; Finkelstein, S.E.; Speiss, P.J.; Surman, D.R.; Palmer, D.C.; Chan, C.-C.; Klebanoff, C.A.;Overwijk, W.W.; et al. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J. Immunol. 2005, 174, 2591–2601.

[19]Gattinoni, L.; Finkelstein, S.E.; Klebanoff, C.A.; Antony, P.A.; Palmer, D.C.; Spiess, P.J.; Hwang, L.N.; Yu, Z.; Wrzesinski, C.;Heimann, D.M.; et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 2005, 202, 907–912.

[20]Salem, M.L.; Cole, D.J. Dendritic cell recovery post-lymphodepletion: A potential mechanism for anti-cancer adoptive T cell therapy and vaccination. Cancer Immunol. Immunother. 2010, 59, 341–353.

[21]Cheng, L.E.; Ohlén, C.; Nelson, B.H.; Greenberg, P.D. Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death. Proc. Natl. Acad. Sci. USA 2002, 99, 3001–3006.

[22]Wang, C.; Li, M.; Wei, R.; Wu, J. Adoptive transfer of TILs plus anti-PD1 therapy: An alternative combination therapy for treating metastatic osteosarcoma. J. Bone Oncol. 2020, 25, 100332.

[23]Peng, Q.; Qiu, X.; Zhang, Z.; Zhang, S.; Zhang, Y.; Liang, Y.; Guo, J.; Peng, H.; Chen, M.; Fu, Y.-X.; et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat. Commun. 2020, 11, 4835.

[24]Mayoux, M.; Roller, A.; Pulko, V.; Sammicheli, S.; Chen, S.; Sum, E.; Jost, C.; Fransen, M.F.; Buser, R.B.; Kowanetz, M.; et al.Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci. Transl. Med. 2020, 12, eaav7431.

[25]Cooper, Z.A.; Frederick, D.T.; Juneja, V.R.; Sullivan, R.J.; Lawrence, D.P.; Piris, A.; Sharpe, A.H.; Fisher, D.E.; Flaherty, K.T.; Wargo,J.A. BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncoimmunology 2013, 2, e26615.

[26]Ilieva, K.M.; Correa, I.; Josephs, D.H.; Karagiannis, P.; Egbuniwe, I.U.; Cafferkey, M.J.; Spicer, J.F.; Harries, M.; Nestle, F.O.; Lacy, K.E.; et al. Effects of BRAF mutations and BRAF inhibition on immune responses to melanoma. Mol. Cancer Ther. 2014, 13, 2769–2783.

[27]Sloot, S.; Zager, J.S.; Kudchadkar, R.R.; Messina, J.L.; Benedict, J.J.; Gonzalez, R.J.; DeConti, R.; Turner, L.M.; McCardle, T.; Smalley, K.S.; et al. BRAF inhibition for advanced locoregional BRAF V600E mutant melanoma: A potential neoadjuvant strategy. Melanoma Res. 2016, 26, 83–87.

[28]Deniger, D.C.; Kwong, M.L.M.; Pasetto, A.; Dudley, M.E.; Wunderlich, J.R.; Langhan, M.M.; Lee, C.-C.R.; Rosenberg, S.A. A Pilot Trial of the Combination of Vemurafenib with Adoptive Cell Therapy in Patients with Metastatic Melanoma. Clin. Cancer Res. Off.J. Am. Assoc. Cancer Res. 2017, 23, 351–362.

[29]van Willigen, W.W.; Bloemendal, M.; Gerritsen, W.R.; Schreibelt, G.; de Vries, I.J.M.; Bol, K.F. Dendritic Cell Cancer Therapy: Vaccinating the Right Patient at the Right Time. Front. Immunol. 2018, 9, 2265.

[30]Zhang, R.; Yuan, F.; Shu, Y.; Tian, Y.; Zhou, B.; Yi, L.; Zhang, X.; Ding, Z.; Xu, H.; Yang, L. Personalized neoantigen-pulsed dendritic cell vaccines show superior immunogenicity to neoantigen-adjuvant vaccines in mouse tumor models. Cancer Immunol. Immunother. CII 2020, 69, 135–145.

[31]Santos, J.M.; Heiniö, C.; Cervera-Carrascon, V.; Quixabeira, D.C.A.; Siurala, M.; Havunen, R.; Butzow, R.; Zafar, S.; de Gruijl, T.;Lassus, H.; et al. Oncolytic adenovirus shapes the ovarian tumor microenvironment for potent tumor-infiltrating lymphocyte tumor reactivity. J. Immunother. Cancer 2020, 8, e000188.

[32]Feist, M.; Zhu, Z.; Dai, E.; Ma, C.; Liu, Z.; Giehl, E.; Ravindranathan, R.; Kowalsky, S.J.; Obermajer, N.; Kammula, U.S.; et al.Oncolytic virus promotes tumor-reactive infiltrating lymphocytes for adoptive cell therapy. Cancer Gene Ther. 2021, 28, 98–111.

[33]Khammari, A.; Nguyen, J.M.; Saint-Jean, M.; Knol, A.C.; Pandolfino, M.C.; Quereux, G.; Brocard, A.; Peuvrel, L.; Saiagh, S.; Bataille, V.; et al. Adoptive T cell therapy combined with intralesional administrations of TG1042 (adenovirus expressing interferon-γ) in metastatic melanoma patients. Cancer Immunol. Immunother. CII 2015, 64, 805–815.

[34]Kvistborg, P.; Shu, C.J.; Heemskerk, B.; Fankhauser, M.; Thrue, C.A.; Toebes, M.; van Rooij, N.; Linnemann, C.; van Buuren, M.M.; Urbanus, J.H.; et al. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology 2012, 1, 409–418.

[35]Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science 2015, 348, 69–74.